11.1 Mediation using Path models
An even more flexible approach to mediation can be taken using path models, a type of structural equation model which are covered in more detail in the next section.
Using the lavaan
package, path/SEM models can specify multiple variables to be
outcomes, and fit these models simultaneously. For example, we can fit both step
2 and step 3 in a single model, as in the example below:
library(lavaan)
This is lavaan 0.6-3
lavaan is BETA software! Please report any bugs.
smash.model <- '
crashes ~ speed + lateness
speed ~ lateness
'
smash.model.fit <- sem(smash.model, data=smash)
summary(smash.model.fit)
lavaan 0.6-3 ended normally after 19 iterations
Optimization method NLMINB
Number of free parameters 5
Number of observations 200
Estimator ML
Model Fit Test Statistic 0.000
Degrees of freedom 0
Minimum Function Value 0.0000000000000
Parameter Estimates:
Information Expected
Information saturated (h1) model Structured
Standard Errors Standard
Regressions:
Estimate Std.Err z-value P(>|z|)
crashes ~
speed 0.288 0.031 9.152 0.000
lateness 0.297 0.095 3.111 0.002
speed ~
lateness 0.515 0.212 2.434 0.015
Variances:
Estimate Std.Err z-value P(>|z|)
.crashes 18.190 1.819 10.000 0.000
.speed 92.135 9.214 10.000 0.000
The summary output gives us coefficients which correspond to the regression coefficients in the step 2 and step 3 models — but this time, from a single model.
We can also use lavaan
to compute the indirect effects by labelling the
relevant parameters, using the *
and :=
operators. See the
lavaan
syntax guide for mediation
for more detail.
Note that the *
operator does not have the same meaning as in formulas for
linear models in R — in lavaan
, it means ‘apply a constraint’.
smash.model <- '
crashes ~ B*speed + C*lateness
speed ~ A*lateness
# computed parameters, see http://lavaan.ugent.be/tutorial/mediation.html
indirect := A*B
total := C + (A*B)
proportion := indirect/total
'
smash.model.fit <- sem(smash.model, data=smash)
summary(smash.model.fit)
lavaan 0.6-3 ended normally after 19 iterations
Optimization method NLMINB
Number of free parameters 5
Number of observations 200
Estimator ML
Model Fit Test Statistic 0.000
Degrees of freedom 0
Minimum Function Value 0.0000000000000
Parameter Estimates:
Information Expected
Information saturated (h1) model Structured
Standard Errors Standard
Regressions:
Estimate Std.Err z-value P(>|z|)
crashes ~
speed (B) 0.288 0.031 9.152 0.000
lateness (C) 0.297 0.095 3.111 0.002
speed ~
lateness (A) 0.515 0.212 2.434 0.015
Variances:
Estimate Std.Err z-value P(>|z|)
.crashes 18.190 1.819 10.000 0.000
.speed 92.135 9.214 10.000 0.000
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
indirect 0.148 0.063 2.353 0.019
total 0.445 0.112 3.973 0.000
proportion 0.333 0.121 2.756 0.006
We can again get a bootstrap interval for the indirect effect, and print a table of just these computed effects like so:
set.seed(1234)
smash.model.fit <- sem(smash.model, data=smash, test="bootstrap", bootstrap=100)
parameterEstimates(smash.model.fit) %>%
filter(op == ":=") %>%
select(label, est, contains("ci")) %>%
pander::pander()
label | est | ci.lower | ci.upper |
---|---|---|---|
indirect | 0.1481 | 0.02472 | 0.2715 |
total | 0.4448 | 0.2254 | 0.6643 |
proportion | 0.3329 | 0.09614 | 0.5697 |
Comparing these results with the mediation::mediate()
output, we get similar
results. In both cases, it’s possible to increase the number of bootstrap
resamples if needed to increase the precision of the interval (the default is
1000, but 5000 might be a good target for publication).